Article analysis: LinkedIn faced criticism for updating terms of service after using user data for AI training
“The bad optics happened because these brands failed to communicate to their existing audiences.”
Analyzing linkedin’s AI move: lessons in communication
In analyzing the article “Where LinkedIn’s AI Move Went Wrong,” we uncover key points and insights into LinkedIn’s recent controversy regarding its terms of service update. The central argument revolves around LinkedIn’s lack of transparency in using user data to train AI models before updating its terms of service, which sparked public outcry.
Lack of communication: the core issue
The article effectively contextualizes LinkedIn’s actions against similar missteps by Adobe, Meta, and Zoom. Robert Rose, CMI’s chief strategy advisor, argues that LinkedIn’s real error lay in its communication strategy or rather, the lack of it. The backlash wasn’t purely about data usage; it was the principle of making changes unannounced that upset users.
A contrarian perspective
Rose’s suggestion that users primarily expect their data to improve platform services presents an interesting counter-narrative. This view challenges the conventional wisdom that prioritizes stringent user consent. However, such an assumption might not universally represent user sentiments, especially concerning data privacy and ethical AI usage.
Lessons for future endeavors
The article offers a forward-thinking perspective by emphasizing the inevitability of platforms utilizing user data for AI purposes. However, it stresses that companies must synchronize their legal, marketing, and communication efforts to avoid public relations pitfalls. This critique is both practical and empowering, urging businesses to refine their strategies.
Critical evaluation
While the article is insightful, it could benefit from incorporating diverse perspectives and more empirical evidence. The argument heavily relies on Rose’s single viewpoint, potentially oversimplifying the broad spectrum of user concerns. Nonetheless, the emphasis on communication provides a results-driven takeaway that other companies can apply proactively.
By focusing on better coordination and transparency, businesses can foster trust and engagement in a forward-thinking, ethically sound manner. This analysis underscores the importance of clear communication in navigating the complex terrain of AI and data usage.
Featured writing
Why customer tools are organized wrong
This article reveals a fundamental flaw in how customer support tools are designed—organizing by interaction type instead of by customer—and explains why this fragmentation wastes time and obscures the full picture you need to help users effectively.
Infrastructure shapes thought
The tools you build determine what kinds of thinking become possible. On infrastructure, friction, and building deliberately for thought rather than just throughput.
Server-Side Dashboard Architecture: Why Moving Data Fetching Off the Browser Changes Everything
How choosing server-side rendering solved security, CORS, and credential management problems I didn't know I had.
Books
The Work of Being (in progress)
A book on AI, judgment, and staying human at work.
The Practice of Work (in progress)
Practical essays on how work actually gets done.
Recent writing
We always panic about new tools (and we're always wrong)
Every time a new tool emerges for making or manipulating symbols, we panic. The pattern is so consistent it's almost embarrassing. Here's what happened each time.
Dev reflection - February 03, 2026
I've been thinking about constraints today. Not the kind that block you—the kind that clarify. There's a difference, and most people miss it.
When execution becomes cheap, ideas become expensive
This article reveals a fundamental shift in how organizations operate: as AI makes execution nearly instantaneous, the bottleneck has moved from implementation to decision-making. Understanding this transition is critical for anyone leading teams or making strategic choices in an AI-enabled world.
Notes and related thinking
Article analysis: LinkedIn's AI Misstep: The Crucial Role of Transparency and Communication in Tech Initiatives
Discover how LinkedIn's failure in transparency and communication sparked backlash over AI data use, highlighting crucial lessons for tech companies.
Article analysis: 3 AI competencies you need now for the future
Master essential AI competencies to thrive in an evolving landscape and ensure your career remains irreplaceable in the age of artificial intelligence.
Article analysis: Computer use (beta)
Explore the capabilities and limitations of Claude 3.5 Sonnet's computer use features, and learn how to optimize performance effectively.